

 Navigation

 	
 index

 	
 next |

 	NodeConductor JIRA 0.4.0 documentation

Welcome to NodeConductor JIRA plugin’s documentation!

Plugin for interaction and management of Atlassian JIRA.

Guide

	Installation

	Configuration

	WebHook Setup

	Example Setup

API

	JIRA

License

NodeConductor JIRA plugin is open-source under MIT license.

Indices and tables

	Index

	Search Page

 Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NodeConductor JIRA 0.4.0 documentation

Installation

	Install NodeConductor [http://nodeconductor.readthedocs.org/en/latest/guide/intro.html#installation-from-source]

	Clone NodeConductor JIRA repository

git clone https://github.com/opennode/nodeconductor-jira.git

	Install NodeConductor JIRA into NodeConductor virtual environment

cd /path/to/nodeconductor-jira/
python setup.py install

 Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NodeConductor JIRA 0.4.0 documentation

Configuration

NodeConductor can integrate with Atlassian JIRA to provide support to the end-users.

Expected structure for the JIRA project is as follows:

	Existing issue type: Support Request (must be default issue type for the project)

	Custom fields:
	Impact, type: Text Field (single line)

	Original Reporter, type: Text Field (single line)

Expected permissions:

	Permission
	Permission code

	Add Comments
	COMMENT_ISSUE

	Edit Own Comments
	COMMENT_EDIT_OWN

	Browse Projects
	BROWSE

WebHook Setup

It’s possible to track updates of JIRA issues and apply them to NodeConductor immediately.

An instruction of JIRA configuration can be found at
https://developer.atlassian.com/jiradev/jira-apis/webhooks

WebHook URL should be defined as http://nodeconductor.example.com/api/jira-webhook-receiver/
and following events enabled:

	issue created

	issue updated

	issue deleted

Example Setup

1. Create support service

POST /api/jira/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
Host: example.com

{
 "name": "JIRA Support",
 "customer": "http://example.com/api/customers/eea999ddf31540aea6bd4f591aa353d1/",
 "backend_url": "https://jira.example.com/",
 "username": "username",
 "password": "password",
 "available_for_all": false
}

2. Import support project

Make sure custom fields configured properly and “available_for_all” property is set to true.

POST /api/jira/a2f322fed8c444fab48547f595b34279/link/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
Host: example.com

{
 "backend_id": "SPT",
 "project": "http://example.com/api/projects/e63838e3e68f4fc4aa39617b7550cef3/",
 "impact_field": "Impact",
 "reporter_field": "Original Reporter",
 "default_issue_type": "Support Request",
 "available_for_all": true
}

3. Perform support actions

Please use a project created about to post issues.

 Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	NodeConductor JIRA 0.4.0 documentation

 	<no title>

JIRA

JIRA

/api/jira/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira/

Methods: GET, POST

Supported fields for creation:

	name – string

	project – link to /api/projects/<uuid>/

	customer – link to /api/customers/<uuid>/

	settings – link to /api/service-settings/<uuid>/

	backend_url – URL (JIRA host (e.g. https://jira.example.com/))

	username – string (JIRA user with excessive privileges)

	password – string

	available_for_all – boolean (Service will be automatically added to all customers projects if it is available for all)

	scope – link to any: /api/jira-projects/<uuid>/ (VM that contains service)

Filter fields:

	?customer = UUIDFilter

	?name = string

	?settings = link

	?project_uuid = UUIDFilter

	?project = link

	?tag = ModelMultipleChoiceField

	?rtag = ModelMultipleChoiceField

	?shared = boolean

	?type = ServiceTypeFilter

To list all services without regard to its type, run GET against /api/services/ as an authenticated user.

To list services of specific type issue GET to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

To create a service, issue a POST to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

You can create service based on shared service settings. Example:

POST /api/digitalocean/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
Host: example.com

{
 "name": "Common DigitalOcean",
 "customer": "http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/",
 "settings": "http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/"
}

Or provide your own credentials. Example:

POST /api/oracle/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
Host: example.com

{
 "name": "My Oracle",
 "customer": "http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/",
 "backend_url": "https://oracle.example.com:7802/em",
 "username": "admin",
 "password": "secret"
}

/api/jira/<uuid>/

Methods: GET, PUT, PATCH, DELETE

Supported fields for update:

	name – string

	available_for_all – boolean (Service will be automatically added to all customers projects if it is available for all)

/api/jira/<uuid>/link/

Methods: GET, POST

To get a list of resources available for import, run GET against /<service_endpoint>/link/
as an authenticated user.
Optionally project_uuid parameter can be supplied for services requiring it like OpenStack.

To import (link with NodeConductor) resource issue POST against the same endpoint with resource id.

POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
Host: example.com

{
 "backend_id": "bd5ec24d-9164-440b-a9f2-1b3c807c5df3",
 "project": "http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/"
}

/api/jira/<uuid>/managed_resources/

Methods: GET

/api/jira/<uuid>/unlink/

Methods: POST

Unlink all related resources, service project link and service itself.

/api/jira-webhook-receiver/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira-webhook-receiver/

Methods: POST

Supported fields for creation:

	webhookEvent – choice('jira:issue_created', 'jira:issue_deleted', 'jira:issue_updated')

	timestamp – UnixTimeField

	changelog – JiraChangelogSerializer

	comment – JiraCommentSerializer

	issue – JiraIssueSerializer

	user – JiraUserSerializer

/api/jira-service-project-link/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira-service-project-link/

Methods: GET, POST

Supported fields for creation:

	project – link to /api/projects/<uuid>/

	service – link to /api/jira/<uuid>/

Filter fields:

	?project = link

	?service_uuid = UUIDFilter

	?customer_uuid = UUIDFilter

	?project_uuid = UUIDFilter

To get a list of connections between a project and an service, run GET against service_project_link_url
as authenticated user. Note that a user can only see connections of a project where a user has a role.

If service has available_for_all flag, project-service connections are created automatically.
Otherwise, in order to be able to provision resources, service must first be linked to a project.
To do that, POST a connection between project and a service to service_project_link_url
as stuff user or customer owner.

/api/jira-service-project-link/<pk>/

Methods: GET, DELETE

To remove a link, issue DELETE to URL of the corresponding connection as stuff user or customer owner.

/api/jira-projects/

SLA filter

Allows to filter or sort resources by actual_sla
Default period is current year and month.

Example query parameters for filtering list of OpenStack instances:

/api/openstack-instances/?actual_sla=90&period=2016-02

Example query parameters for sorting list of OpenStack instances:

/api/openstack-instances/?o=actual_sla&period=2016-02

Monitoring filter

Filter and order resources by monitoring item.
For example, given query dictionary

{
 'monitoring__installation_state': True
}

it produces following query

{
 'monitoring_item__name': 'installation_state',
 'monitoring_item__value': True
}

Example query parameters for sorting list of OpenStack instances:

/api/openstack-instances/?o=monitoring__installation_state

Tags ordering. Filtering for complex tags.

	Example:

	?tag__license-os=centos7 - will filter objects with tag “license-os:centos7”.

	Allow to define next parameters in view:

	
	tags_filter_db_field - name of tags field in database. Default: tags.

	tags_filter_request_field - name of tags in request. Default: tag.

In PostgreSQL NULL values come last with ascending sort order.
In MySQL NULL values come first with ascending sort order.
This filter provides unified sorting for both databases.
Supported actions and methods:

/api/jira-projects/

Methods: GET, POST

Supported fields for creation:

	name – string

	description – string

	service_project_link – link to /api/jira-service-project-link/<pk>/

	key – string

	impact_field – string

	reporter_field – string

	default_issue_type – string

	available_for_all – boolean (Allow access to any user)

Filter fields:

	?available_for_all = boolean

/api/jira-projects/<uuid>/

Methods: GET, PUT, PATCH, DELETE

Supported fields for update:

	name – string

	description – string

	impact_field – string

	reporter_field – string

	default_issue_type – string

	available_for_all – boolean (Allow access to any user)

/api/jira-issues/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira-issues/

Methods: GET, POST

Supported fields for creation:

	user – link to /api/users/<uuid>/

	project – link to /api/jira-projects/<uuid>/

	summary – string

	description – string

	priority – choice('Critical', 'Major', 'Minor', 'n/a')

	impact – choice('Large - Whole organization or all services are affected', 'Medium - One department or service is affected', 'Small - Partial loss of service, one person affected', 'n/a')

Filter fields:

	?status = string

	?description = string

	?project_key = string

	?summary = string

	?key = string

	?user_uuid = UUIDFilter

Order fields: created, updated

/api/jira-issues/<uuid>/

Methods: GET, PUT, PATCH, DELETE

Supported fields for update:

	user – link to /api/users/<uuid>/

	summary – string

	description – string

	priority – choice('Critical', 'Major', 'Minor', 'n/a')

	impact – choice('Large - Whole organization or all services are affected', 'Medium - One department or service is affected', 'Small - Partial loss of service, one person affected', 'n/a')

/api/jira-comments/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira-comments/

Methods: GET, POST

Supported fields for creation:

	issue – link to /api/jira-issues/<uuid>/

	message – string

Filter fields:

	?issue_key = string

	?user_uuid = UUIDFilter

	?issue_uuid = UUIDFilter

/api/jira-comments/<uuid>/

Methods: GET, PUT, PATCH, DELETE

Supported fields for update:

	message – string

/api/jira-attachments/

A filter backend that uses django-filter.
Supported actions and methods:

/api/jira-attachments/

Methods: GET, POST

Supported fields for creation:

	issue – link to /api/jira-issues/<uuid>/

	file – file

Filter fields:

	?issue_key = string

/api/jira-attachments/<uuid>/

Methods: GET, PUT, PATCH, DELETE

Supported fields for update:

	file – file

 Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	NodeConductor JIRA 0.4.0 documentation

Index

 Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

 drfapi/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NodeConductor JIRA 0.4.0 documentation »

		JIRA

 © Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		NodeConductor JIRA 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, OpenNode.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/robohare.png

_static/comment-bright.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

